Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Int. arch. otorhinolaryngol. (Impr.) ; 27(2): 342-350, April-June 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1440229

ABSTRACT

Abstract Introduction Acquired tracheomalacia (ATM) is characterized by a loss of structural strength of the tracheal framework, resulting in airway collapse during breathing. Near half of the patients undergoing prolonged invasive mechanical ventilation will suffer tracheal lesions. Treatment for ATM includes external splinting with rib grafts, prosthetic materials, and tracheal resection. Failure in the use of prosthetic materials has made reconsidering natural origin scaffolds and tissue engineering as a suitable alternative. Objective To restore adequate airway patency in an ovine model with surgicallyinduced ATM employing a tissue-engineered extraluminal tracheal splint (TE-ETS). Methods In the present prospective pilot study, tracheal rings were partially resected to induce airway collapse in 16 Suffolk sheep (Ovis aries). The TE-ETS was developed with autologous mesenchymal-derived chondrocytes and allogenic decellularized tracheal segments and was implanted above debilitated tracheal rings. The animals were followed-up at 8, 12, and 16 weeks and at 1-year postinsertion. Flexible tracheoscopies were performed at each stage. After sacrifice, a histopathological study of the trachea and the splint were performed. Results The TE-ETS prevented airway collapse for 16 weeks and up to 1-year postinsertion. Tracheoscopies revealed a noncollapsing airway during inspiration. Histopathological analyses showed the organization of mesenchymal-derived chondrocytes in lacunae, the proliferation of blood vessels, and recovery of epithelial tissue subjacent to the splint. Splints without autologous cells did not prevent airway collapse. Conclusion It is possible to treat acquired tracheomalacia with TE-ETS without further surgical removal since it undergoes physiological degradation. The present study supports the development of tissue-engineered tracheal substitutes for airway disease.

2.
Electron. j. biotechnol ; 41: 81-87, sept. 2019. tab, graf, ilus
Article in English | LILACS | ID: biblio-1087242

ABSTRACT

Background: The search for innovative anti-tubercular agents has received increasing attention in tuberculosis chemotherapy because Mycobacterium tuberculosis infection has steadily increased over the years. This underlines the necessity for new methods of preparation for polymer-drug adducts to treat this important infectious disease. The use of poly(ethylene glycol)(PEG) is an alternative producing anti-tubercular derivatives. However, it is not yet known whether PEGylated isonicotinylhydrazide conjugates obtained by direct links with PEG are useful for therapeutic applications. Results: Here, we synthesized a PEGylated isoniazid (PEG-g-INH or PEG­INH) by gamma radiation-induced polymerization, for the first time. The new prodrugs were characterized using Raman and UV/Vis spectrometry. The mechanism of PEGylated INH synthesis was proposed. The in vitro evaluation of a PEGylated isonicotinylhydrazide macromolecular prodrug was also carried out. The results indicated that PEG­INH inhibited the bacterial growth above 95% as compared with INH, which showed a lower value (80%) at a concentration of 0.25 µM. Similar trends are observed for 0.1, 1, and 5 µM. Conclusions: In summary, the research suggests that it is possible to covalently attach the PEG onto INH by the proposed method and to obtain a slow-acting isoniazid derivative with little toxicity in vitro and higher antimycobacterial potency than the neat drug.


Subject(s)
Polyethylene Glycols/chemistry , Isoniazid/chemistry , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemistry , Polyethylene Glycols/pharmacology , Polymers , Spectrum Analysis, Raman , In Vitro Techniques , Prodrugs , Polymerization , Gamma Rays , Isoniazid/pharmacology , Antitubercular Agents/pharmacology
3.
Int. j. morphol ; 32(4): 1347-1356, Dec. 2014. ilus
Article in English | LILACS | ID: lil-734682

ABSTRACT

Tissue engineering (TE) has become an alternative for auricular reconstruction based on the combination of cells, molecular signals and biomaterials. Scaffolds are biomaterials that provide structural support for cell attachment and subsequent tissue development. Ideally, a scaffold should have characteristics such as biocompatibility and bioactivity to adequate support cell functions. Our purpose was to evaluate biocompatibility of microtic auricular chondrocytes seeded onto a chitosan-polyvinyl alcohol-epichlorohydrin (CS-PVA-ECH) hydrogel to propose this material as a scaffold for tissue engineering application. After being cultured onto CS-PVA-ECH hydrogels, auricular chondrocytes viability was up to 81%. SEM analysis showed cell attachment and extracellular matrix formation that was confirmed by IF detection of type II collagen and elastin, the main constituents of elastic cartilage. Expression of elastic cartilage molecular markers during in vitro expansion and during culture onto hydrogels allowed confirming auricular chondrocyte phenotype. In vivo assay of tissue formation revealed generation of neotissues with similar physical characteristics and protein composition to those found in elastic cartilage. According to our results, biocompatibility of the CS-PVA-ECH hydrogel makes it a suitable scaffold for tissue engineering application aimed to elastic cartilage regeneration.


La ingeniería de tejidos (TE) es una alternativa para la reconstrucción auricular basada en la combinación de células, señales moleculares y biomateriales. Los andamios fabricados con biomateriales brindan un soporte estructural que favorece la adhesión cellular y el desarrollo del tejido. Un andamio debe poseer características como biocompatibilidad y bioactividad para soportar adecuadamente funciones celulares. Nuestro objetivo fue evaluar la biocompatibilidad de condrocitos auriculares de microtia cultivados sobre un hidrogel a base de quitosano-alcohol polivinílico-epiclorhidrina (CS-PVA-ECH) y proponerlo como andamio con aplicaciones en ingeniería de tejidos. La viabilidad de los condrocitos auriculares es superior al 81% después de ser cultivados sobre el hidrogel. El análisis por SEM reveló la unión celular y formación de matriz extracellular sobre el hidrogel; confirmada mediante detección por IF de colágena tipo II y elastina. La expresión de marcadores moleculares durante la expansión in vitro y el cultivo sobre los hidrogeles confirmaron el fenotipo condral. El ensayo de formación de tejido in vivo demostró la generación de neotejidos con características físicas y composición similar al cartílago elástico. Nuestros resultados indican que la biocompatibilidad del hidrogel de CS-PVA-ECH lo hace un andamio adecuado para aplicaciones en ingeniería de tejidos enfocadas a regeneración de cartílago elástico.


Subject(s)
Humans , Chondrocytes/cytology , Tissue Engineering/methods , Chitosan/chemistry , Ear Cartilage/cytology , Polyvinyls/chemistry , Biocompatible Materials , Immunohistochemistry , Cell Culture Techniques , Chondrocytes/metabolism , Hydrogels , Epichlorohydrin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL